discriminant
discriminant - Shows how many roots and their properties a polynomial has
Formula: ΔCubic Equation
Free Cubic Equation Calculator - Solves for cubic equations in the form ax3 + bx2 + cx + d = 0 using the following methods:
1) Solve the long way for all 3 roots and the discriminant Δ
2) Rational Root Theorem (Rational Zero Theorem) to solve for real roots followed by the synthetic div/quadratic method for the other imaginary roots if applicable.
difference between 2 positive numbers is 3 and the sum of their squares is 117 Declare variables for each of the two numbers: [LIST] [*]Let the first variable be x [*]Let the second variable be y [/LIST] We're given 2 equations: [LIST=1] [*]x - y = 3 [*]x^2 + y^2 = 117 [/LIST] Rewrite equation (1) in terms of x by adding y to each side: [LIST=1] [*]x = y + 3 [*]x^2 + y^2 = 117 [/LIST] Substitute equation (1) into equation (2) for x: (y + 3)^2 + y^2 = 117 Evaluate and simplify: y^2 + 3y + 3y + 9 + y^2 = 117 Combine like terms: 2y^2 + 6y + 9 = 117 Subtract 117 from each side: 2y^2 + 6y + 9 - 117 = 117 - 117 2y^2 + 6y - 108 = 0 This is a quadratic equation: Solve the quadratic equation 2y2+6y-108 = 0 With the standard form of ax2 + bx + c, we have our a, b, and c values: a = 2, b = 6, c = -108 Solve the quadratic equation 2y^2 + 6y - 108 = 0 The quadratic formula is denoted below: y = -b sqrt(b^2 - 4ac)/2a [U]Step 1 - calculate negative b:[/U] -b = -(6) -b = -6 [U]Step 2 - calculate the discriminant ?:[/U] ? = b2 - 4ac: ? = 62 - 4 x 2 x -108 ? = 36 - -864 ? = 900 <--- Discriminant Since ? is greater than zero, we can expect two real and unequal roots. [U]Step 3 - take the square root of the discriminant ?:[/U] ?? = ?(900) ?? = 30 [U]Step 4 - find numerator 1 which is -b + the square root of the Discriminant:[/U] Numerator 1 = -b + ?? Numerator 1 = -6 + 30 Numerator 1 = 24 [U]Step 5 - find numerator 2 which is -b - the square root of the Discriminant:[/U] Numerator 2 = -b - ?? Numerator 2 = -6 - 30 Numerator 2 = -36 [U]Step 6 - calculate your denominator which is 2a:[/U] Denominator = 2 * a Denominator = 2 * 2 Denominator = 4 [U]Step 7 - you have everything you need to solve. Find solutions:[/U] Solution 1 = Numerator 1/Denominator Solution 1 = 24/4 Solution 1 = 6 Solution 2 = Numerator 2/Denominator Solution 2 = -36/4 Solution 2 = -9 [U]As a solution set, our answers would be:[/U] (Solution 1, Solution 2) = (6, -9) Since one of the solutions is not positive and the problem asks for 2 positive number, this problem has no solution
Quadratic equation hacks using the discriminant Solve x^2- 4x+ 5 using a discriminant: Discriminant is: Discriminant = b^2- 4ac Discriminant = (-4)^2 - 4(1)(5) Discriminant = 16 - 20 Discriminant = -4 When Discriminant < 0, the quadratic has [I][U]no solution [MEDIA=youtube]RogZ3430_8E[/MEDIA][/U][/I]
Free Quadratic Equations and Inequalities Calculator - Solves for quadratic equations in the form ax2 + bx + c = 0. Also generates practice problems as well as hints for each problem.
* Solve using the quadratic formula and the discriminant Δ
* Complete the Square for the Quadratic
* Factor the Quadratic
* Y-Intercept
* Vertex (h,k) of the parabola formed by the quadratic where h is the Axis of Symmetry as well as the vertex form of the equation a(h - h)2 + k
* Concavity of the parabola formed by the quadratic
* Using the Rational Root Theorem (Rational Zero Theorem), the calculator will determine potential roots which can then be tested against the synthetic calculator.
Free Quartic Equations Calculator - Solves quartic equations in the form ax4 + bx3 + cx2 + dx + e using the following methods:
1) Solve the long way for all roots and the discriminant Δ
2) Rational Root Theorem (Rational Zero Theorem) to solve for real roots followed by the synthetic div/quadratic method for the other imaginary roots if applicable.
ncG1vNJzZmivp6x7rq3ToZqepJWXv6rA2GeaqKVfqLKivsKhZamgoHS%2BfrDIrJqroZ2eu6K60w%3D%3D